97av,蜜桃视频下载,国产精品久久久久久婷婷,国产老妇伦国产熟女老妇久

     
  中文版 English
 
Hot news:
  News
  Company news
  Industry News
  Current news
Hot Product
IPX1 IPX2 Drip Waterproof Test...
UL1439 Sharp Edge Tester
BND-TPK05 IEC 60529 Test Probe...
IEC62368 test probe kit BND-TP...
IEC 61032 Standard Test Probe ...
IEC60320 EN60320 Appliances co...
UL 498 Standard Plugs and Rece...
IPX1 to IPX4 Drip rain test an...
Vertical horizontal vibration ...
IP5X IP6X Sand and dust proof ...
climate constant temperature a...
IPX1 to IPX9 waterproof testin...
 
 
Industry News
Home  -  News  -  Industry News
Understanding the Functionality and Procedures of High and Low Temperature Test Chambers
From: BONAD  Date: 2024-11-07 17:57:44

High and low temperature test chambers are crucial devices used for performing reliability tests on industrial products. These chambers simulate extreme temperature environments to evaluate the performance of various products, including electronic devices, automotive parts, aerospace components, and marine weaponry.

Working Principle of High and Low Temperature Test Chambers

The operation of high and low temperature test chambers is primarily based on precise temperature control and regulation. Let's explore the high-temperature control first. Heating is essential to achieve high temperatures within the chamber, which is relatively straightforward. Typically, these chambers use far-infrared nickel-chromium alloy high-speed heating wires for this purpose. The temperature control system employs a PID+SSR system to ensure accurate and efficient energy usage.

For low-temperature operations, increasing the number of heating wires and enhancing the performance of the temperature control software are necessary for rapid heating and achieving high temperatures. Additionally, the refrigeration system is critical for attaining low temperatures. The refrigeration system usually consists of a fully enclosed compressor unit from a French manufacturer, utilizing fluorine refrigerants for cooling. Its operation is based on the reversed Carnot cycle, where the refrigerant is compressed to a higher pressure through the compressor and then exchanges heat with the surrounding medium via the condenser to achieve cooling.

In summary, high and low temperature test chambers transition between extreme temperatures through a synergistic action of temperature balance and control systems. During continuous operation, the control system uses PID automatic calculation to adjust heater output, achieving dynamic balance and ensuring stable chamber operation.

225L Constant Temperature and humidity Test chamber

Standard Operating Procedures for High and Low Temperature Test Chambers

1. Power Connection: Connect the power source and switch on the power switch, typically located on the side panel of the control cabinet.

2. Standby Check: Allow the chamber to run for at least 60 seconds and check for any phase sequence alarms.

3. Cooling Water System: Activate the cooling water pump's power switch and open both inlet and outlet valves for cooling water. Ensure that the drain valve is closed before opening. Monitor water pressure gauge readings at both inlet and outlet, ensuring pressure between 0.2~0.6Mpa with a pressure difference greater than 0.2Mpa. Also, ensure water temperature does not exceed 28℃.

4. Humidification Device Setup: If humidity operation is needed, turn on the humidification device's power switch and open the water pipe valve.

5. Setting Test Parameters: Set required temperature and humidity parameters on the chamber's control panel.

6. Start the Test Chamber: After setting test parameters, start the test chamber and enable over-temperature protection.

7. Fault Handling: In case of any alarms during testing, refer to the "Installation and Maintenance Manual" for troubleshooting procedures.

Common Dehumidification Methods in High and Low Temperature Test Chambers

1. Refrigeration Dehumidification Method: This method condenses water vapor in air onto a cold surface, forming water or frost which is then removed from the chamber. However, prolonged testing may cause frost buildup affecting dehumidification efficiency; thus controlling cold surface temperatures above 0℃ is crucial.

2. Solid Desiccant Dehumidification Method: This method absorbs water vapor from air using solid desiccants to achieve dehumidification—ideal for tests requiring lower dew point temperatures around -70℃. Although effective in achieving lower humidity levels due to lower surface water vapor pressure of desiccants, it can be inconvenient requiring specialized equipment.

In special test scenarios like testing internal combustion engines at low temperatures or during operation requiring large air supply for fuel combustion—solid desiccant-based rotary dehumidifiers operating continuously are typically used to prevent excessive frost buildup on evaporators due to new air’s water vapor.

 

 
 
Home  |  Products  |  News  |  About us  |  Feedback  |  Contact us  |  
Copyright © 2008-2015 Hong Kong Bonad Technology Limited | Shenzhen Bonad Instrument Co., LTD. All Rights Reserved.
 
    Add:C505, Hongdu Building,Bao\'an45 district,Shenzhen,518101,Guangdong Province,China    Tel:+86-13380391156    Fax:0755-23721200    Email:Alice@szbonad.com
 
婷婷在线| 迁安市| 亚洲地区一二三色| 亚洲国产精品18久久久久久| av加勒比| 久久久久亚洲精品国产| 欧美人人| 日韩毛片在线视频X| 国产freesexvideos性中国| 日本乱人伦在线观看| 伊人成年网站综合网| 亚洲AV无码国产在丝袜线观看| 国产专区免费资源网站| 亚洲AV永久无码精品九之| 国内精品久久久久久不卡影院| 亚洲精品无码久久不卡| 国产精品爽爽V在线观看无码| 国产精成a品人v在线播放| 又粗又黄又硬又爽的免费视频| 国产无遮挡又黄又爽不要vip网站 小13箩利洗澡无码视频免费网站 久久天天躁狠狠躁夜夜2020一 | 国产人成午夜免电影费观看| 超碰| 竹山县| 精品国产在天天在线观看| 少妇精品无码一区二区三区| 怀宁县| 亚洲午夜无码久久久久软件 | 亚洲国产成人精品无码区在线观看 | 中文字幕日韩精品亚洲七区| 亚洲国产精品一区二区第一页| jizzyou中国少妇| 亚洲av麻豆aⅴ无码电影| 图片区小说区激情区偷拍区 | 欧美日韩精品久久久免费观看| 99精品久久久久中文字幕| 伊人情人综合网| 成人丁香| 97福利视频| 欧美性老妇| 乱女乱妇熟女熟妇综合网网站| 欧美疯狂做受bbbbbb|