97av,蜜桃视频下载,国产精品久久久久久婷婷,国产老妇伦国产熟女老妇久

     
  中文版 English
 
Hot news:
  News
  Company news
  Industry News
  Current news
Hot Product
IPX1 IPX2 Drip Waterproof Test...
UL1439 Sharp Edge Tester
BND-TPK05 IEC 60529 Test Probe...
IEC62368 test probe kit BND-TP...
IEC 61032 Standard Test Probe ...
IEC60320 EN60320 Appliances co...
UL 498 Standard Plugs and Rece...
IPX1 to IPX4 Drip rain test an...
Vertical horizontal vibration ...
IP5X IP6X Sand and dust proof ...
climate constant temperature a...
IPX1 to IPX9 waterproof testin...
 
 
Industry News
Home  -  News  -  Industry News
Understanding the Functionality and Procedures of High and Low Temperature Test Chambers
From: BONAD  Date: 2024-11-07 17:57:44

High and low temperature test chambers are crucial devices used for performing reliability tests on industrial products. These chambers simulate extreme temperature environments to evaluate the performance of various products, including electronic devices, automotive parts, aerospace components, and marine weaponry.

Working Principle of High and Low Temperature Test Chambers

The operation of high and low temperature test chambers is primarily based on precise temperature control and regulation. Let's explore the high-temperature control first. Heating is essential to achieve high temperatures within the chamber, which is relatively straightforward. Typically, these chambers use far-infrared nickel-chromium alloy high-speed heating wires for this purpose. The temperature control system employs a PID+SSR system to ensure accurate and efficient energy usage.

For low-temperature operations, increasing the number of heating wires and enhancing the performance of the temperature control software are necessary for rapid heating and achieving high temperatures. Additionally, the refrigeration system is critical for attaining low temperatures. The refrigeration system usually consists of a fully enclosed compressor unit from a French manufacturer, utilizing fluorine refrigerants for cooling. Its operation is based on the reversed Carnot cycle, where the refrigerant is compressed to a higher pressure through the compressor and then exchanges heat with the surrounding medium via the condenser to achieve cooling.

In summary, high and low temperature test chambers transition between extreme temperatures through a synergistic action of temperature balance and control systems. During continuous operation, the control system uses PID automatic calculation to adjust heater output, achieving dynamic balance and ensuring stable chamber operation.

225L Constant Temperature and humidity Test chamber

Standard Operating Procedures for High and Low Temperature Test Chambers

1. Power Connection: Connect the power source and switch on the power switch, typically located on the side panel of the control cabinet.

2. Standby Check: Allow the chamber to run for at least 60 seconds and check for any phase sequence alarms.

3. Cooling Water System: Activate the cooling water pump's power switch and open both inlet and outlet valves for cooling water. Ensure that the drain valve is closed before opening. Monitor water pressure gauge readings at both inlet and outlet, ensuring pressure between 0.2~0.6Mpa with a pressure difference greater than 0.2Mpa. Also, ensure water temperature does not exceed 28℃.

4. Humidification Device Setup: If humidity operation is needed, turn on the humidification device's power switch and open the water pipe valve.

5. Setting Test Parameters: Set required temperature and humidity parameters on the chamber's control panel.

6. Start the Test Chamber: After setting test parameters, start the test chamber and enable over-temperature protection.

7. Fault Handling: In case of any alarms during testing, refer to the "Installation and Maintenance Manual" for troubleshooting procedures.

Common Dehumidification Methods in High and Low Temperature Test Chambers

1. Refrigeration Dehumidification Method: This method condenses water vapor in air onto a cold surface, forming water or frost which is then removed from the chamber. However, prolonged testing may cause frost buildup affecting dehumidification efficiency; thus controlling cold surface temperatures above 0℃ is crucial.

2. Solid Desiccant Dehumidification Method: This method absorbs water vapor from air using solid desiccants to achieve dehumidification—ideal for tests requiring lower dew point temperatures around -70℃. Although effective in achieving lower humidity levels due to lower surface water vapor pressure of desiccants, it can be inconvenient requiring specialized equipment.

In special test scenarios like testing internal combustion engines at low temperatures or during operation requiring large air supply for fuel combustion—solid desiccant-based rotary dehumidifiers operating continuously are typically used to prevent excessive frost buildup on evaporators due to new air’s water vapor.

 

 
 
Home  |  Products  |  News  |  About us  |  Feedback  |  Contact us  |  
Copyright © 2008-2015 Hong Kong Bonad Technology Limited | Shenzhen Bonad Instrument Co., LTD. All Rights Reserved.
 
    Add:C505, Hongdu Building,Bao\\\'an45 district,Shenzhen,518101,Guangdong Province,China    Tel:+86-13380391156    Fax:0755-23721200    Email:Alice@szbonad.com
 
内射干少妇亚洲69xxx| 天堂网www在线资源中文| 美日韩av| 黄色www.| 97国产精精| 一本之道高清码狼人破| 黑人巨粗进入警花肖雨霖| 欧美一区二区三区在线| 三上悠亚上司の在线播放| 一本精品中文字幕在线| 欢迎访问国产精品一区二区三区不卡 | 少妇一级淫片免费看| 毛片毛片毛片毛片毛片毛片| 欧美一区二区三区视频在线观看 | 日韩欧美精品一区二区| 亚洲精品国产精品色诱一区| 《乳色吐息》无删减樱花之夜| 国产乱妇无码大片在线观看| 亚洲日韩国产一区二区三区在线| 亚洲欧美日本国产99久久久| 综合网日日天干夜夜久久| 91精品国产一区二区无码蜜臀a| 久久中文精品无码中文字幕| 亚洲国产成人精品无码区二本| 东京热男人av天堂| 亚洲人成综合网站7777香蕉| 在线观看无码AV网站永久免费 | 国产成人麻豆精品午夜福利在线| 四虎亚洲精品私库av在线| 热久久美女精品天天吊色| 国产一区二区三区精华液| 狠狠色丁香婷婷综合潮喷| 亚洲av片不卡无码久久嫩模| 国产精品无码AV不卡| 男女性高爱潮免费网站| 国产丶欧美丶日本不卡视频 | 日本高清视频www夜色资源| 全免费A级毛片免费看视频| 久久99精品国产99久久6尤物| 无码中文字幕色专区| 亚洲综合激情另类小说区|